name :
0A058G
title :
Advanced Data Preparation Using IBM SPSS Modeler (v18.1.1)
category :
Analytics
vendor :
IBM
classroomDeliveryMethod :
Classroom IBM
descriptions :
description :
OverviewThis course covers advanced topics to aid in the preparation of data for a successful data science project. You will learn how to use functions, deal with missing values, use advanced field operations, handle sequence data, apply advanced sampling methods, and improve efficiency.AudienceThis advanced course is intended for anyone who wants to become familiar with the full range of techniques available in IBM SPSS Modeler for data preparation.Prerequisites• Experience using IBM SPSS Modeler including familiarity with the Modeler environment, creating streams, reading data files, exploring data, setting the unit of analysis, combining datasets, deriving and reclassifying fields, and basic knowledge of modeling.
• Prior completion of the Introduction to IBM SPSS Modeler and Data Science course is recommended.ObjectiveUsing functions to cleanse and enrich dataUsing additional field transformationsWorking with sequence dataSampling, partitioning and balancing dataImproving efficiencyCourse Outline1: Using functions to cleanse and enrich data
• Use date functions
• Use conversion functions
• Use string functions
• Use statistical functions
• Use missing value functions
2: Using additional field transformations
• Replace values with the Filler node
• Recode continuous fields with the Binning node
• Change a field’s distribution with the Transform node
3: Working with sequence data
• Use sequence functions
• Count an event across records
• Expand a continuous field into a series of continuous fields with the Restructure node
• Use geospatial and time data with the Space-Time-Boxes node
4: Sampling, partitioning and balancing data
• Draw simple and complex samples with the Sample node
• Create a training set and testing set with the Partition node
• Reduce or boost the number of records with the Balance node
5:  Improving efficiency
• Use database scalability by SQL pushback
• Process outliers and missing values with the Data Audit node
• Use the Set Globals node
• Use parameters
• Use looping and conditional execution
overview :
[This course covers advanced topics to aid in the preparation of data for a successful data science project. You will learn how to use functions, deal with missing values, use advanced field operations, handle sequence data, apply advanced sampling methods, and improve efficiency.]
abstract :
This course covers advanced topics to aid in the preparation of data for a successful data science project. You will learn how to use functions, deal with missing values, use advanced field operations, handle sequence data, apply advanced sampling methods, and improve efficiency.
prerequisits :
objective :
Overview This course covers advanced topics to aid in the preparation of data for a successful data science project. You will learn how to use functions, deal with missing values, use advanced field operations, handle sequence data, apply advanced sampling methods, and improve efficiency. Audience This advanced course is intended for anyone who wants to become familiar with the full range of techniques available in IBM SPSS Modeler for data preparation. Prerequisites • Experience using IBM SPSS Modeler including familiarity with the Modeler environment, creating streams, reading data files, exploring data, setting the unit of analysis, combining datasets, deriving and reclassifying fields, and basic knowledge of modeling.
• Prior completion of the Introduction to IBM SPSS Modeler and Data Science course is recommended. Objective Using functions to cleanse and enrich data Using additional field transformations Working with sequence data Sampling, partitioning and balancing data Improving efficiency
topic :
Course Outline1: Using functions to cleanse and enrich data
• Use date functions
• Use conversion functions
• Use string functions
• Use statistical functions
• Use missing value functions
2: Using additional field transformations
• Replace values with the Filler node
• Recode continuous fields with the Binning node
• Change a field’s distribution with the Transform node
3: Working with sequence data
• Use sequence functions
• Count an event across records
• Expand a continuous field into a series of continuous fields with the Restructure node
• Use geospatial and time data with the Space-Time-Boxes node
4: Sampling, partitioning and balancing data
• Draw simple and complex samples with the Sample node
• Create a training set and testing set with the Partition node
• Reduce or boost the number of records with the Balance node
5:  Improving efficiency
• Use database scalability by SQL pushback
• Process outliers and missing values with the Data Audit node
• Use the Set Globals node
• Use parameters
• Use looping and conditional execution
startDate :
2021-05-10T19:06:14Z
endDate :
2022-04-15T00:00:00Z
lastModified :
2021-05-10T08:00:41Z
created :
2018-01-05T08:00:30Z
duration :
8
durationUnit :
HOURS
ibmIPType :
listPrice :
currency :
badge_Template_ID :
49ac3ae3-9fa2-49c7-a129-f19807ca36f4
badge_Title :
Advanced Data Preparation Using IBM SPSS Modeler (v18.1.1) - Code: 0A058G
badge_Url :
https://www.credly.com/org/ibm/badge/advanced-data-preparation-using-ibm-spss-modeler-v18-1-1-code-0a058g

    Enquire about this course: